
Tarragona Smart Mediterranean City

1a Conferencia BioEconomic ®Autoconsumo

"Autogeneración Energética Inyección Cero y Aisladas" En el marco del 1er Ciclo de Conferencias BioEconomic[®] 2014 - 2015

Tarragona Smart City 2017

La mejor inversión: la sostenibilidad

Media partners

Caloryfrio.com

impulsa.cat

Javier Sánchez Regional Sales Manager SAFT

7 de Octubre de 2014

Summary

- 1. Overview of the PV integration issues
- 2. Energy storage applications for PV integration
- 3. Saft Field Experience on PV plant Integration with Li-Ion
- 4. Intensium Home. Li-ion for Residential Energy Storage

SAFT in numbers

3856 staff worldwide

18 countries around the world

14 manufacturing sites worldwide

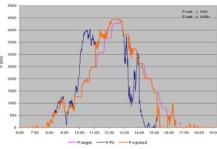
624 M€ Sales in 2013

9,3 % of Group Sales invested in R&D in 2013

★ Head office

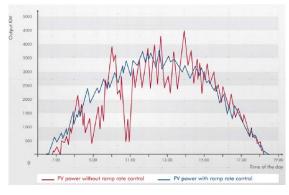
- Specialty Battery Group production site
- Industrial Battery Group production site
- Saft sales network
- ASB (50% Saft, 50% EADS)

1. Overview of PV integration issues

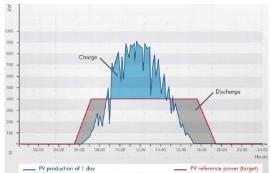


Overview of PV plants integration issues

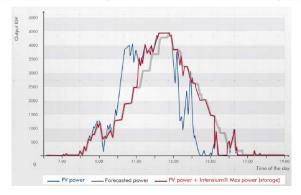
- PV power plants have high power variability
 More than wind plants in the very short term (30 seconds to 5min)
- PV plants have limited predictability
 - Forecasting errors remain high as per today
 - Energy storage always needed since forecast can never be perfect
- High PV penetration levels create voltage issues and congestions in feeders/substations
- **No inertia** (contrary to conventional groups)
- Energy Storage Systems can solve all these issues while other smart grid solutions provide partial solutions

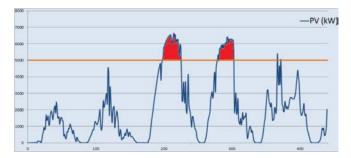


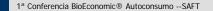
2. Energy Storage applications for PV plants integration



Typical storage applications for PV Integration


1- PV Ramp control


3 - PV Shaping/firming



2- PV smoothing / Imbalance Management

4 - PV Curtailment Avoidance

7

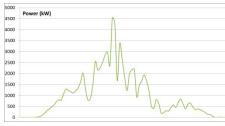
8 1ª Conferencia BioEconomic® Autoconsumo --SAFT

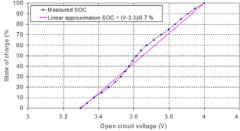
Why Li-Ion for PV integration

Suited to dynamic cycling

- Changing and unpredictable power patterns
- Prolonged partial SOC

High Power capability

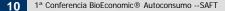

- In comparison to other batteries (Na based, Redox, Lead based)
- Constant in a large SOC and T range


Accurate SOC indication in real-time

Allows smart energy management strategiesKey for day-ahead market and scheduling

Excellent roundtrip efficiency maximizing PV injection to grid

20 years lifetime is possible!



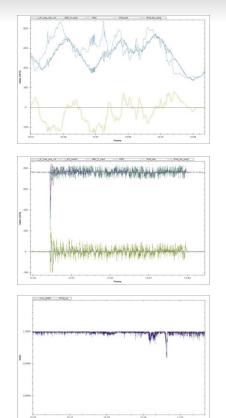
3. Field Experience on large PV plants with Li-Ion batteries

Installed base of Utility Scale containerized ESS

ILIS Project (Tudela, Spain)

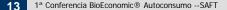
- First European PV + Battery MW plant connected to mainland grid
- Associates 1.2MWp PV plant and 1100kW/580kWh Li-Ion system
- 4 modes of operation: 1 defined P & Q set-points
 3 frequency regulation
- 2 ramp rate control
- 4 voltage regulation
- Acciona control system able to adapt to different Grid Codes and to offer services based on hourly PV production predictions, electricity prices

In partnership with:



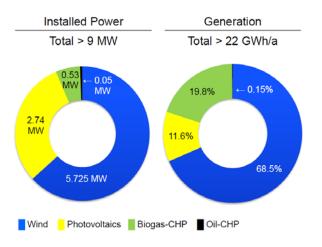
ILIS Tudela Operation modes

- Ramp rate control: fluctuations in active power can be regulated according predefined maximum ramp rates depending on set parameters (i.e. 2.5% per minute)
- Frequency regulation: active power production of the plant is regulated based on grid frequency.
 - Battery power +/-200kW (20% of Pmax)
 - Accuracy +/-10%
 - Time response with PCS 0,5 Sec

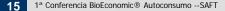

Reactive power control:

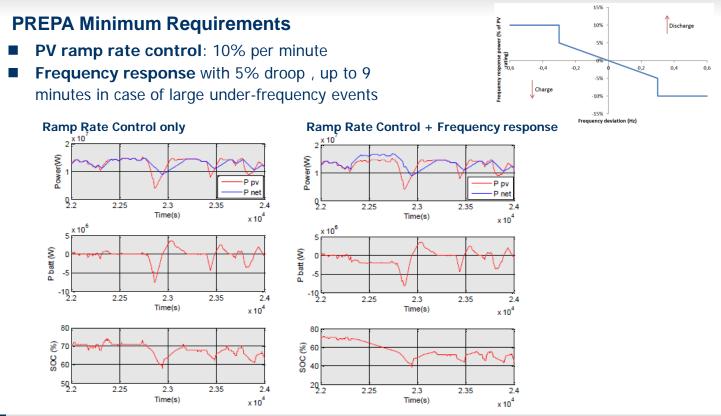
- voltage regulation at grid connection point
- Cos phi control regulation
- Q setpoint from operator

PV curtailment avoidance in Germany



Pellworm island - Smart Region project


- Renewable Island in North of Germany (100% renewables generation)
- Generation is 22 GWh per year while consumption is 7GWh per year (3 times!!)
- Renewable surplus is transported to mainland Germany with 2 sea cables but <u>congestions</u> occur sometimes leading to <u>Renewable curtailment</u>
- Hybrid energy storage plant (Li-Ion 1100kW/580kWh + Redox 200kW/1600kWh) to achieve renewable curtailment avoidance


PV ramp control in Puerto-Rico

Salinas 10MWp PV Power plant (Puerto Rico)

Shaping application in La Réunion Island

Bardzour PV+Battery project (La Réunion Island)

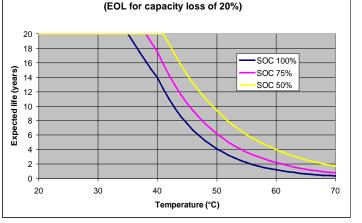
- Akuo Energy is one of the first IPPs to develop and operate a PV+Battery plant in a commercial manner
- 9MWp PV Plant with ESS to meet EDF SEI requirements
 - Shaping at 40% of maximum power
 - Primary reserve : 10% of maximum power / 15 minutes
 - Voltage control with reactive power

Optimum sizing is 9MWh/4.5MW Li-Ion system 2 systems in 20 years

Energy capacity	Losses	Average DOD	Lifetime
9 MWh	11.3%	69.8%	>12 years
14 MWh	3.5%	56.3%	>17 years
21 MWh	0.7%	44.9%	>20 years

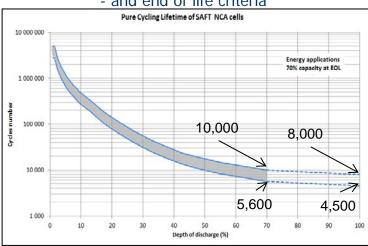
Operational Oct 2014

4. Intensium Home. Li-ion for residential Energy Storage.


Calendar life and cycle life

Calendar life

- in years
- depending on SOC & temperature


Expected life for VL Li-lon cells according to temperature

and end of life criteria

Cycle life

- in nb of cycles
- depending on DOD and charge rate

SOC: state of charge DOD: depth of discharge

10 1^a Conferencia BioEconomic® Autoconsumo --SAFT

- and end of life criteria

Modular Battery concept for ESS PV self-consumption

High DC Voltage
 Serial connected

- Energy Module 48V, 2.2
 kWh, serial connection up to 720V
 - 33 kWh Example Shown 6 Module – 1 BMM

288V, 13kWh

Example shown 2 Module – 1 BMM

48V, 4KWh

High Performance

- 97% roundtrip efficiency
- 20 years lifetime @ 1 cycle per day (60% average)
- Maintenance free

Safety

- BMM: built-in safety with communikation
- Hihg reliability and safety
 - Safety oriented development IEC 61508
- Certification
 - UN, EMC, SIL , IEC 60950-1 und IEC 62040*)
 - VDE tested in Germany
 - *) IEC 60950-1 Information technology equipment safety, general requirements
 - IEC 62040 general & safety requirements for UPS used in operator access areas

Residential ESS for PV self-consumption / back-up

Intensium Home 4kWh

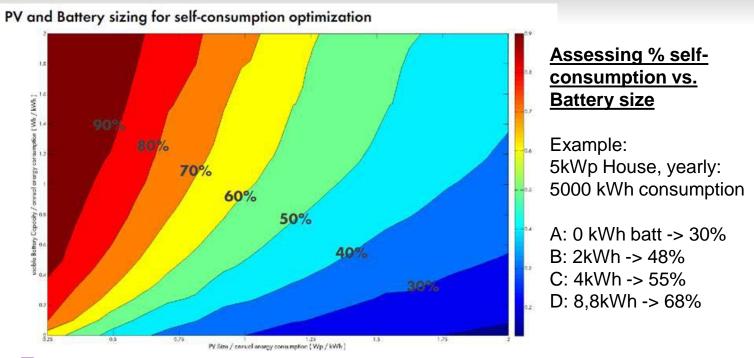
Technical data:

-

Nominal characteristics at + 25°C		
Voltage (V)	48	
Capacity (C/5) (Ah) at + 25°C	84	
Rated energy (C/5) (Wh)	4000	
Mechanical characteristics		
Width (mm)	535	
Height (mm)	700	
Depth (mm)	520	
Weight (kg)	85	
Electrical characteristics at + 25°C		
Voltage (V)	42 to 56	
Maximum continuous discharge current (A)	160	
Maximum continuous discharge power (W) at 50% SOC	7600	
Peak discharge power in 3 s (W) at 50% SOC	15100	
Maximum continuous recharge current (A)	82	
Maximum continuous recharge power (W) at 50% SOC	4100	
Peak recharge power in 5 s (W) at 50% SOC	12100	
Operating conditions		
Operating temperature	0 to 40°C	
Cycle efficiency (one way)	>95%	
Self-discharge	<7% per month	
Calendar lifetime at + 25°C	>20 years	
Cycling lifetime at 60% DOD	>7000 cycles	

sa

Intensium Home - Complete System for Installation


4kWh battery system

compatible with

5kW inverter & EMS

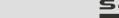
PV Self-consumption application

But ! Self-consumption is not the only benefit of storage = > Back-up power in case of black-out ... but what is the value of it?

Germany as example about self-comsumption policies

During the last years Germans householders are more focused to raise their energy "self-consumption" rather than feeding it into the grid.

Energy Storage is the way to target the selfconsumption increasing and frees against the electricty rates.


Intensium Home offers everything to minimize the grid dependece in a 5,39KWp PV installation:

- 1. Life duration > 20 years (one cycle per day)
- 2. Compact and lightweight
- 3. (Almost) Free of maintenance
- 4. 15Kw of peak pulse and 7,5Kw of continuous output.

Thank you !

javier.sanchez@saftbatteries.com

